2024

421. C.P. Fucetola, J.T. Wang, O.A. Bolonduro, C.M. Lieber and B.P. Timko, “Single-crystal silicon nanotubes, hollow nanocones, and branched nanotube networks”,  ACS Nano 18, 3775-3782 (2024). 

2023

420. Anqi Zhang†, Theodore J. Zwang†, Charles M. Lieber*‡. “Biochemically-functionalized probes for cell type-specific targeting and recording in the brain.” Sci. Adv., 9, eadk1050 (2023). 

419. X. Yang†*, Y. Qi†, C. Wang, T.J. Zwang, N.J. Rommelfanger, G. Hong* and C.M. Lieber*. “Laminin-coated electronic scaffolds with vascular topography for tracking and promoting the migration of brain.” Nat. Biomed. Eng., DOI: 10.1038/s41551-023-01101-6 (2023).

418. A. Zhang, E.T. Manderville, L. Xu, C.M. Stary, E.H. Lo and C.M. Lieber, “Ultra-flexible endovascular probes for brain recording through micron-scale vasculature“, Science 381, 306-312 (2023).

Accompanying Perspective: B. Timko, “Neural implants without brain surgery”, Science 381, 268-269 (2023).

417. D. Lin, J.M. Lee, C. Wang, H-G. Park, C.M. Lieber, “Injectable ventral spinal stimulator evokes programmable and biomimetic hindlimb motion“,  Nano Lett.  (2023)[bioRxiv]

416. J.M. Lee, D. Lin, Y.-W. Pyo, H.-R. Kim, H.-G. Park C.M. Lieber, “Stitching flexible electronics into the brain,” Adv. Sci., 10, 2300220 (2023); 

[Advanced Science News]

2022

415. J. M. Lee, D.Lin, G.Hong, K. H.Kim H. G. Park, & C. M. Lieber. “Scalable three-dimensional recording electrodes for probing biological tissues“. Nano Letters, 22(11), 4552-4559 (2022).

2021

414. J. M. Lee D. Lin , HR. Kim , YW Pyo ,G. Hong ,C. M. Lieber ,H.G. Park . “All-tissue-like multifunctional optoelectronic mesh for deep-brain modulation and mapping“. Nano Letters.  21(7):3184-90 (2021).

 

413. A. Zhang, Y. Zhao, S. You, and C.M. Lieber, “Nanowire-enabled bioelectronicsNano Today 38, 101135 (2021).

2019

412. A. Zhang, Y. Zhao, S. You and C.M. Lieber, “Nanowire probes could drive high-resolution brain-machine interfaces,” Nano Today DOI: 10.1016/j.nantod.2019.100821, 9 Dec 2019.

411. M. Sistani, J. Delaforce, R. B. G. Kramer, N. Roch, M. A. Luong, M.I. den Hertog, E. Robin, J. Smoliner, J. Yao, C.M. Lieber, C. Naud, A. Lugstein and O. Buisson, “Highly transparent contacts to the 1D hole gas in ultrascaled Ge/Si core/shell nanowires,” ACS Nano 13, 14145−14151 (2019).

410. M. Tran, K. Shekhar, I.E. Whitney, A. Jacobi, I. Benhar, G. Hong, W. Yan, X. Adiconis, M.E. Arnold, J.M. Lee, J.Z. Levin, D. Lin, C. Wang, C.M. Lieber, A. Regev, Z. He and J.R. Sanes, “Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes,” Neuron 86, 21-24 (2019).

409. S.R. Patel and C.M. Lieber, “Precision electronic medicine in the brain,” Nat. Biotechnol. 37, 1007–1012 (2019). [download pdf]

408. J.M. Lee, G. Hong, D. Lin, T.G. Schuhmann, A.T. Sullivan, R.D. Viveros, H.-G. Park and C.M. Lieber, “Nano-enabled direct contact interfacing of syringe-injectable mesh electronics,” Nano Lett. 19, 5818-5826 (2019). [supplementary info]

407. Y. Zhao, S. You, A. Zhang, J.-H. Lee, J.L. Huang and C.M. Lieber, “Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording,” Nat. Nanotechnol. 14, 783-790 (2019). [supplementary info]

406. R.D. Viveros, T. Zhou, G. Hong, T.-M. Fu, H.Y.G. Lin and C.M. Lieber, “Advanced one- and two-dimensional mesh designs for injectable electronics,” Nano Lett. 19, 4180-4187 (2019).

405. B. Tian and C.M. Lieber, “Nanowired bioelectric interfaces,” Chem. Rev. 119, 9136−9152 (2019).

404. G. Hong and C.M. Lieber, “Novel electrode technologies for neural recordings,” Nat. Rev. Neurosci. 20, 330-345 (2019).

403. X. Yang, T. Zhou, T.J. Zwang, G. Hong, Y. Zhao, R.D. Viveros, T.-M. Fu, T. Gao and C.M. Lieber, “Bioinspired neuron-like electronics,” Nat. Mater. 18, 510–517 (2019).[supplementary info]

402. R. Wang, R.S. Deacon, J. Sun, J. Yao, C.M. Lieber and K. Ishibashi, “Gate tunable hole charge qubit formed in a Ge/Si nanowire double quantum dot coupled to microwave photons,” Nano Lett. 19, 1052-1060 (2019).

2018

401. J. Sun, R.S. Deacon, R. Wang, J. Yao, C.M. Lieber and K. Ishibashi, “Helical hole state in multiple conduction modes in Ge/Si core/shell nanowire,” Nano Lett. 18, 6144-6149 (2018).

400. T.G. Schuhmann, T. Zhou, G. Hong, J.M. Lee, T.-M. Fu, H.-G. Park and C.M. Lieber, “Syringe-injectable mesh electronics for stable chronic rodent electrophysiology,” J. Vis. Exp. 137, e58003 (2018). [view video]

399. G. Hong, T.-M. Fu, M. Qian, R.D. Viveros, X. Yang, T. Zhou, J.M. Lee, H.-G. Park, J.R. Sanes and C.M. Lieber, “A method for single-neuron chronic recording from the retina in awake mice,” Science 360, 1447-1451 (2018).

398. G. Hong, R.D. Viveros, T. Zwang, X. Yang and C.M. Lieber, “Tissue-like neural probes for understanding and modulating the brain,” Biochemistry 57, 3995-4004 (2018).

397. X. Dai, G. Hong, T. Gao and C.M. Lieber, “Mesh nanoelectronics: seamless integration of electronics with tissues,” Acc. Chem. Res. 51, 309-318 (2018).

396. G. Hong, X. Yang, T. Zhou and C.M. Lieber, “Mesh electronics: a new paradigm for tissue-like brain probes,” Curr. Opin. Neurobiol. 50, 33-41 (2018).

2017

395. T.-M. Fu, G. Hong, R.D. Viveros, T. Zhou and C.M. Lieber, “Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology,” Proc. Natl. Acad. Sci. USA 114, E10046-E10055 (2017). [supplementary info]

394. T.G. Schuhmann, J. Yao, G. Hong, T.-M. Fu and C.M. Lieber, “Syringe-injectable electronics with a plug-and-play input/output interface,” Nano Lett. 17, 5836-5842 (2017). [supplementary info]

393. R. Wang, R.S. Deacon, J. Yao, C.M. Lieber and K. Ishibashi, “Electrical modulation of weak-antilocalization and spin-orbit interaction in dual gated Ge/Si core/shell nanowires,” Semicond. Sci. Technol. 32, 094002 (11 pp) (2017).

392. T. Ozel, B.A. Zhang, R. Gao, R.W. Day, C.M. Lieber and D.G. Nocera, “Electrochemical deposition of conformal and functional layers on high aspect ratio silicon micro/nanowires,” Nano Lett. 17, 4502-4507 (2017). [supplementary info]

391. P.E. Sheehan and C.M. Lieber, “Friction between van der Waals solids during lattice directed sliding,” Nano Lett. 17, 4116-4121 (2017). [supplementary info]

390. T. Zhou, G. Hong, T.-M. Fu, X. Yang, T.G. Schuhmann, R.D. Viveros and C.M. Lieber, “Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain,” Proc. Natl. Acad. Sci. USA 114, 5894-5899 (2017). [supplementary info]

389. E.J.H. Lee, X. Jiang, R. Zitko, R. Aguado, C.M. Lieber and S. De Franceschi, “Scaling of sub-gap excitations in a superconductor-semiconductor nanowire quantum dot,” Phys. Rev. B 95, 180502(R) (2017). [supplementary info]

388. W. Zhou, X. Dai and C.M. Lieber, “Advances in nanowire bioelectronics,” Rep. Prog. Phys. 80, 016701 (2017).

2016

387. N. Gao, T. Gao, X. Yang, X. Dai, W. Zhou, A. Zhang and C. M. Lieber, “Specific detection of biomolecules in physiological solutions using graphene transistor biosensors,” Proc. Natl. Acad. Sci. USA 113, 14633-14638 (2016). [supplementary info]

386. T.-M. Fu, G. Hong, T. Zhou, T.G. Schuhmann, R.D. Viveros and C.M. Lieber, “Stable long-term chronic brain mapping at the single neuron level,” Nat. Methods 13, 875-882 (2016). [supplementary info]

385. A. Zhang, G. Zheng and C.M. Lieber, Nanowires: Building blocks for nanoscience and nanotechnology, Springer 2016. [Review, MRS Bulletin 42:540, July 2017]

384. X. Dai, W. Zhou, T. Gao, J. Liu and C.M. Lieber, “Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues,” Nat. Nanotechnol. 11, 776-782 (2016). [supplementary info]

383. Y.-S. No, R. Gao, M. Mankin, R. Day, H.-G. Park and C.M. Lieber, “Encoding active device elements at nanowire tips,” Nano Lett. 16, 4713-4719 (2016). [supplementary info]

382. Y. Brovman, J. Small, Y. Hu, Y. Fang, C.M. Lieber and P. Kim, “Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires,” J. Appl. Phys. 119, 234304 (2016).

381. Y. Zhao, J. Yao, L. Xu, M. Mankin, Y. Zhu, H. Wu, L. Mai, Q. Zhang and C.M. Lieber, “Shape-controlled deterministic assembly of nanowires,” Nano Lett. 16, 2644-2650 (2016). [supplementary info]

380. R. Day, M. Mankin and C.M. Lieber, “Plateau-Rayleigh crystal growth of nanowire heterostructures: Strain-modified surface chemistry and morphological control in one, two and three dimensions,” Nano Lett. 16, 2830-2836 (2016). [supplementary info]

379. J.-H. Lee, A. Zhang, S. You and C.M. Lieber, “Spontaneous internalization of cell penetrating peptide-modified nanowires into primary neurons,” Nano Lett. 16, 1509-1513 (2016). [supplementary info]

378. A. Zhang and C.M. Lieber, “Nano-bioelectronics,” Chem. Rev. 116, 215-257 (2016).

2015

377. C. Xie, J. Liu, T.-M. Fu, X. Dai, W. Zhou and C.M. Lieber, “Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes,” Nat. Mater. 14, 1286-1292 (2015). [supplementary info]

376. T.J. Kempa, D.K. Bediako, E.C. Jones, C.M. Lieber and D.G. Nocera, “Facile, rapid, and large-area periodic patterning of semiconductor substrates with submicron inorganic structures,” J. Am. Chem. Soc. 137, 3739-3742 (2015). [supplementary info]

375. A.P. Alivisatos, H. Tierney, P. Weiss and C.M. Lieber, “ACS Nano and Nano Letters, partners in leading nanoscience and nanotechnology,” Nano Lett. 15, 4845-4845 (2015).

374. G. Hong, T.-M. Fu, T. Zhou, T. Schuhmann, J. Huang and C.M. Lieber, “Syringe injectable electronics: Precise targeted delivery with quantitative input/output connectivity,” Nano Lett. 15, 6979-6984 (2015). [supplementary info]

373. M. Mankin, R. Day, R. Gao, Y.-S. No, S.-K. Kim, A. McClelland, D. Bell, H.-G. Park and C.M. Lieber, “Facet-selective epitaxy of compound semiconductors on faceted silicon nanowires,” Nano Lett. 15, 4776-4782 (2015). [supplementary info]

372. J. Liu, T.-M. Fu, Z. Cheng, G. Hong, T. Zhou, L. Jin, M. Duvvuri, Z. Jiang, P. Kruskal, C. Xie, Z. Suo, Y. Fang and C.M. Lieber, “Syringe-injectable electronics,” Nat. Nanotechnol. 10, 629-636 (2015). [supplementary info]

371. P. Kruskal, Z. Jiang, T. Gao and C.M. Lieber, “Beyond the patch clamp: Nanotechnologies for intracellular recording,” Neuron 86, 21-24 (2015). [download pdf]

370. R. Day, M. Mankin, R. Gao, Y.-S. No, S.-K. Kim, D. Bell, H.-G. Park and C.M. Lieber, “Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates,” Nat. Nanotechnol. 10, 345-352 (2015). [supplementary info]

369. N. Gao, W. Zhou, X. Jiang, G. Hong, T.-M. Fu and C.M. Lieber, “General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors,” Nano Lett. 15, 2143-2148 (2015). [supplementary info]

368. L. Chen, W. Lu and C.M. Lieber, “Semiconductor nanowire growth and integration,” in Semiconductor nanowires: From next-generation electronics to sustainable energy, Ed. W. Lu and J. Xiang, Royal Society of Chemistry, 2015, 1-53.

367. X. Duan and C.M. Lieber, “Nanoscience and the nano-bioelectronics frontier,” Nano Research 8, 1-22 (2015).

2014

366. X. Jiang, J. Hu, A. Lieber, C. Jackan, J. Biffinger, L. Fitzgerald, B. Ringeisen and C.M. Lieber, “Nanoparticle facilitated extracellular electron transfer in microbial fuel cells,” Nano Lett. 14, 6737-6742 (2014). [supplementary info]

365. Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber and Q. Xiong, “A room temperature low-threshold ultraviolet plasmonic nanolaser,” Nat. Commun. 5, 5953 (2014). [supplementary info]

364. W. Shim, J. Yao and C.M. Lieber, “Programmable resistive-switch nanowire transistor logic circuits,” Nano Lett. 14, 5430-5436 (2014). [supplementary info]

363. A.P. Higginbotham, F. Kuemmeth, T.W. Larsen, J. Yao, H. Yan, C.M. Lieber and C.M. Marcus, “Antilocalization of Coulomb blockade in a Ge/Si nanowire,” Phys. Rev. Lett. 112, 216806 (2014). [supplementary info]

362. A.P. Higginbotham, T.W. Larsen, J. Yao, H. Yan, C.M. Lieber, C.M. Marcus and F. Kuemmeth, “Hole spin coherence in a Ge/Si heterostructure nanowire,” Nano Lett. 14, 3582-3586 (2014). [supplementary info]

361. S.-K. Kim, K.-D. Song, T. Kempa, R. Day, C.M. Lieber and H.-G. Park, “Design of nanowire optical cavities as efficient photon absorbers,” ACS Nano 8, 3707-3714 (2014). [supplementary info]

360. W. Zhou, X. Dai, T.-M. Fu, C. Xie, J. Liu and C.M. Lieber, “Long term stability of nanowire nanoelectronics in physiological environments,” Nano Lett. 14, 1614-1619 (2014). [supplementary info]

359. J. Yao. H. Yan, S. Das, J. Klemic, J. Ellenbogen and C.M. Lieber, “Nanowire nanocomputer as a finite-state machine,” Proc. Natl. Acad. Sci. USA 111, 2431-2435 (2014). [supplementary info]

358. T.-M. Fu, X. Duan, Z. Jiang, X. Dai, P. Xie, Z. Cheng and C.M. Lieber, “Sub-10 nanometer intracellular bioelectronic probes from nanowire-nanotube heterostructures,” Proc. Natl. Acad. Sci. USA 111, 1259-1264 (2014). [supplementary info]

357. E. Lee, X. Jiang, M. Houzet, R. Aguado, C.M. Lieber and S. De Franceschi, “Spin-resolved Andreev levels and parity crossings in hybrid superconductor-semiconductor nanostructures,” Nat. Nanotechnol. 9, 79-84 (2014). [supplementary info]

356. Q. Qing, Z. Jiang, L. Xu, R. Gao, L. Mai and C.M. Lieber, “Free-standing kinked nanowire transistor probes for targeted intracellular recording in three dimensions,” Nat. Nanotechnol. 9, 142-147 (2014). [supplementary info]

355. T. Kempa and C.M. Lieber, “Semiconductor nanowire solar cells: synthetic advances and tunable properties,” Pure Appl. Chem. 86, 13-26 (2014).

2013

354. T.J. Kempa, S.-K. Kim, R.W. Day, H.-G. Park, D.G. Nocera and C.M. Lieber, “Facet-selective growth on nanowires yields multi-component nanostructures and photonic devices,” J. Am. Chem. Soc. 135, 18354-18357 (2013). [supplementary info]

353. X. Jiang, J. Hu, E.R. Petersen, L.A. Fitzgerald, C.S. Jackan, A.M. Lieber, B.R. Ringeisen, C.M. Lieber and J.C. Biffinger, “Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1,” Nat. Commun. 4, 2751 (2013). [supplementary info]

352. X. Duan and C.M. Lieber, “Nanoelectronics meets biology: From new nanoscale devices for live-cell recording to 3D innervated tissues,” Chem. Asian J. 8, 2304-2314 (2013).

351. X. Duan, T.-M. Fu, J. Liu and C.M. Lieber, “Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues,” Nano Today 8 351-373 (2013).

350. B. Tian and C.M. Lieber, “Synthetic nanoelectronic probes for biological cells and tissues,” Annu. Rev. Anal. Chem. 6, 31-51 (2013).

349. J. Yao, H. Yan and C.M. Lieber, “A nanoscale combing technique for the large-scale assembly of highly aligned nanowires,” Nat. Nanotechnol. 8, 329-335 (2013). [supplementary info]

348. T. Cohen-Karni and C.M. Lieber, “Nanowire nanoelectronics: Building interfaces with tissue and cells at the natural scale of biology,” Pure Appl. Chem. 85, 883-901 (2013).

347. J. Liu, C. Xie, X. Dai, L. Jin, W. Zhou and C.M. Lieber, “Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials,” Proc. Natl. Acad. Sci. USA 110, 6694-6699 (2013). [supplementary info]

346. T.J. Kempa, R.W. Day, S.-K. Kim, H.-G. Park and C.M. Lieber, “Semiconductor nanowires: A platform for exploring limits and concepts for nano-enabled solar cells,” Energy Environ. Sci. 6, 719-733 (2013).

345. L. Xu, Z. Jiang, Q. Qing, L. Mai, Q. Zhang and C.M. Lieber, “Design and synthesis of diverse functional kinked nanowire structures for nanoelectronic bioprobes,” Nano Lett. 13, 746-751 (2013). [supplementary info]

2012

344. E.J.H. Lee, X. Jiang, R. Aguado, G. Katsaros, C.M. Lieber and S. De Franceschi, “Zero-bias anomaly in a nanowire quantum dot coupled to superconductors,” Phys. Rev. Lett. 109, 186802-1-5 (2012).

343. B. Tian, J. Liu, T. Dvir, L. Jin, J.H. Tsui, Q. Qing, Z. Suo, R. Langer, D.S. Kohane and C.M. Lieber, “Macroporous nanowire nanoelectronic scaffolds for synthetic tissues,” Nat. Mater. 11, 986-994 (2012). [supplementary info]

342. S.-K. Kim, R.W. Day, J.F. Cahoon, T.J. Kempa, K.-D. Song, H.-G. Park and C.M. Lieber, “Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design,” Nano Lett. 12, 4971-4976 (2012). [supplementary info]

341. R. Gao, S. Strehle, B. Tian, T. Cohen-Karni, P. Xie, X. Duan, Q. Qing and C.M. Lieber, “Outside looking in: Nanotube transistor intracellular sensors,” Nano Lett. 12, 3329-3333 (2012). [supplementary info]

340. T. Cohen-Karni, D. Casanova, J. Cahoon, Q. Qing, D. Bell and C.M. Lieber, “Synthetically-encoded ultrashort-channel nanowire transistors for fast, point-like cellular signal detection,” Nano Lett. 12, 2639-2644 (2012). [supplementary info]

339. Z. Jiang, Q. Qing, P. Xie, R. Gao and C.M. Lieber, “Kinked p-n junction nanowire probes for high spatial resolution sensing and intracellular recording,” Nano Lett. 12, 1711-1716 (2012). [supplementary info]

338. X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H.S. Choe, B. Tian, X. Jiang and C.M. Lieber, “Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor,” Nat. Nanotechnol. 7, 174-179 (2012). [supplementary info]

337. P. Xie, Q. Xiong, Y. Fang, Q. Qing and C.M. Lieber, “Local electrical potential detection of DNA by nanowire-nanopore sensors,” Nat. Nanotechnol. 7, 119-125 (2012). [supplementary info] [cover]

336. J.-U. Park, S. Nam, M.-S. Lee and C.M. Lieber, “Synthesis of monolithic graphene-graphite integrated electronics,” Nat. Mater. 11, 120-125 (2012). [download pdf] [supplementary info]

335. T.J. Kempa, J.F. Cahoon, S.-K. Kim, R.W. Day, D.C. Bell, H.-G. Park and C.M. Lieber, “Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics,” Proc. Natl. Acad. Sci. USA 109, 1407-1412 (2012). [supplementary info]

334. Y. Hu, F. Kuemmeth, C.M. Lieber and C.M. Marcus, “Hole spin relaxation in Ge/Si core-shell nanowire qubits,” Nat. Nanotechnol. 7, 47-50 (2012).

2011

333. G.F. Zheng and C.M. Lieber, “Nanowire biosensors for label-free, real-time, ultrasensitive protein detection,” in Nanoproteomics Methods and Protocols (eds. S.A. Toms and R.J. Wells), Humana Press, 2011.

332. C.M. Lieber, “Semiconductor nanowires: A platform for nanoscience and nanotechnology,” MRS Bull. 36, 1052-1063 (2011).

331. T. Cohen-Karni, B. Tian and C.M. Lieber, “Electrical recording from cardiac cells and tissue using nanowire transistors,” in Nanomedicine and the Cardiovascular System (eds. R.J. Hunter and V.R. Preedy), Science Publishers, 2011.

330. B. Tian and C.M. Lieber, “Design, synthesis, and characterization of novel nanowire structures for photovoltaics and intracellular probes,” Pure Appl. Chem. 83, 2153-2169 (2011).

329. X. Jiang, B. Tian, J. Xiang, F. Qian, G. Zheng, H. Wang, L. Mai and C.M. Lieber, “Rational growth of branched nanowire heterostructures with synthetically encoded properties and function,” Proc. Natl. Acad. Sci. USA 108, 12212-12216 (2011). [supplementary info]

328. H. Yan, H.S. Choe, S.W. Nam, Y. Hu, S. Das, J.F. Klemic, J.C. Ellenbogen and C.M. Lieber, “Programmable nanowire circuits for nanoprocessors,” Nature 470, 240-244 (2011). [supplementary info]

2010

327. G. Yu and C.M. Lieber, “Assembly and integration of semiconductor nanowires for functional nanosystems,” Pure Appl. Chem. 82, 2295-2314 (2010).

326. X. Jiang, J. Hu, L.A. Fitzgerald, J.C. Biffinger, P. Xie, B.R. Ringeisen and C.M. Lieber, “Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single cell imaging,” Proc. Natl. Acad. Sci. USA 107, 16806-16810 (2010). [supplementary info] [movie S1] [movie S2] [movie S3]

325. S. Kwon, J. Kang, C. Seassal, S. Kim, P. Regreny, Y. Lee, C.M. Lieber and H. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10, 3679-3683 (2010).

324. B. Tian, T. Cohen-Karni, Q. Qing, X. Duan, P. Xie and C.M. Lieber, “Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes,” Science 329, 831-834 (2010). [supplementary info]

323. G. Zheng, X. Gao and C.M. Lieber, “Frequency domain detection of biomolecules using silicon nanowire biosensors,” Nano Lett. 10, 3179-3183 (2010).

322. B.P. Timko, T. Cohen-Karni, Q. Qing, B. Tian and C.M. Lieber, “Design and implementation of functional nanoelectronic interfaces with biomolecules, cells and tissue using nanowire device arrays,” IEEE Trans. Nanotechnol. 9, 269-280 (2010).

321. T. Cohen-Karni, Q. Qing, Q. Li, Y. Fang and C.M. Lieber, “Graphene and nanowire transistors for cellular interfaces and electrical recording,” Nano Lett. 10, 1098-1102 (2010).

320. Q. Qing, S.K. Pal, B. Tian, X. Duan, B.P. Timko, T. Cohen-Karni, V.N. Murthy and C.M. Lieber, “Nanowire transistor arrays for mapping neural circuits in acute brain slices,” Proc. Natl. Acad. Sci. USA 107, 1882-1887 (2010). [supplementary info]

319. X.P. Gao, G. Zheng and C.M. Lieber, “Subthreshold regime has the optimal sensitivity for nanowire FET biosensors,” Nano Lett. 10, 547-552 (2010).

2009

318. N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, R.V. Bellamkonda, G.A. Silva, N.W.S. Kam, F. Patolsky and L. Ballerini, “Nanomaterials for neural interfaces,” Adv. Mater. 21, 3970-4004 (2009).

317. S.W. Nam, X. Jiang, Q. Xiong, D. Ham and C.M. Lieber, “Vertically integrated, three-dimensional complementary metal-oxide-semiconductor circuits,” Proc. Natl. Acad. Sci. USA, 106, 21035-21038 (2009). [supplementary info]

316. B. Tian, P. Xie, T.J. Kempa, D.C. Bell and C.M. Lieber, “Single crystalline kinked semiconductor nanowire superstructures,” Nat. Nanotechnol. 4, 824-829 (2009). [supplementary info] [cover]

315. S.K. Lim, M. Brewster, F. Qian, Y. Li, C.M. Lieber and S. Gradecak, “Direct correlation between structural and optical properties of III-V nitride nanowire heterostructures with nanoscale resolution,” Nano Lett. 9, 3940-3944 (2009).

314. P. Xie, Y. Hu, Y. Fang, J. Huang and C.M. Lieber, “Diameter-dependent dopant location in silicon and germanium nanowires,” Proc. Natl. Acad. Sci. USA 106, 15254-15258 (2009).

313. F.A. Zwanenburg, A.A. van Loon, G.A. Steele, C.E.W.M. van Rijmenam, T. Balder, Y. Fang, C.M. Lieber and L.P. Kouwenhoven, “Ultrasmall silicon quantum dots,” J. Appl. Phys. 105, 124314 (2009).

312. S. Vandenbrouck, K. Madjour, D. Theron, Y.J. Dong, Y. Li, C.M. Lieber and C. Gaquiere, “12 GHz F-MAX GaN/AlN/AlGaN nanowire MISFET,” IEEE Electron Dev. Lett. 30, 322-324 (2009).

311. Y. Dong, B. Tian, T. Kempa and C.M. Lieber, “Coaxial group III-nitride nanowire photovoltaics,” Nano Lett. 9, 2183-2187 (2009).

310. T. Cohen-Karni, B.P. Timko, L.E. Weiss and C.M. Lieber, “Flexible electrical recording from cells using nanowire transistor arrays,” Proc. Natl. Acad. Sci. USA 106, 7309-7313 (2009).

309. F.A. Zwanenburg, C.E.W.M. van Rijmenam, Y. Fang, C.M. Lieber and L.P. Kouwenhoven, “Spin states of the first four holes in a silicon nanowire quantum dot,” Nano Lett. 9, 1071-1079 (2009).

308. B.P. Timko, T. Cohen-Karni, G. Yu, Q. Qing, B. Tian and C.M. Lieber, “Electrical recording from hearts with flexible nanowire device arrays,” Nano Lett. 9, 914-918 (2009).

307. B. Tian, T.J. Kempa and C.M. Lieber, “Single nanowire photovoltaics,” Chem. Soc. Rev. 38, 16-24 (2009).

2008

306. W. Lu, P. Xie and C.M. Lieber, “Nanowire transistor performance limits and applications,” IEEE Trans. Electron Dev. 55, 2859-2876 (2008).

305. S. Roddaro, A. Fuhrer, P. Brusheim, C. Fasth, H.Q. Xu, L. Samuelson, J. Xiang and C.M. Lieber, “Spin states of holes in Ge/Si nanowire quantum dots,” Phys. Rev. Lett. 101, 186802-1 – 186802-4 (2008).

304. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng and C.M. Lieber, “Single and tandem axial p-i-n nanowire photovoltaic devices,” Nano Lett. 8, 3456-3460 (2008).

303. H.-G. Park, C.J. Barrelet, Y. Wu, B. Tian, F. Qian and C.M. Lieber, “A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source,” Nat. Photonics 2, 622-626 (2008). [supplementary infoA wavelength-selective photonic-crystal waveguide coupled to a nanowire light source]

302. F. Qian, Y. Li, S. Gradecak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang and C.M. Lieber, “Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers,” Nat. Mater. 7, 701-706 (2008). [supplementary info]

301. W.I. Park, G. Zheng, X. Jiang, B. Tian and C.M. Lieber, “Controlled synthesis of millimeter-long silicon nanowires with uniform electronic properties,” Nano Lett. 8, 3004-3009 (2008).

300. C. Wang, Y. Hu, C.M. Lieber and S. Sun, “Ultrathin Au nanowires and their transport properties,” J. Am. Chem. Soc. 130, 8902-8903 (2008). [supplementary info]

299. Y. Hu, J. Xiang, G. Liang, H. Yan and C.M. Lieber, “Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed,” Nano Lett. 8, 925-930 (2008). [supplementary info]

298. G. Yu, X. Li, C.M. Lieber and A. Cao, “Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures,” J. Mater. Chem. 18, 728-734 (2008). [cover]

297. Y. Dong, G. Yu, M.C. McAlpine, W. Lu and C.M. Lieber, “Si/a-Si core/shell nanowires as nonvolatile crossbar switches,” Nano Lett. 8, 386-391 (2008). [supplementary info]

296. D.V. Vezenov, A. Noy and C.M. Lieber, “Chemical force microscopy: Force spectroscopy and imaging of complex interactions in molecular assemblies,” in Handbook of Molecular Force Spectroscopy 123-141 (ed. A. Noy, Springer, 2008).

295. A. Noy, D.V. Vezenov and C.M. Lieber, “Chemical force microscopy nanoscale probing of fundamental chemical interactions,” in Handbook of Molecular Force Spectroscopy 97-122 (ed. A. Noy, Springer, 2008).

294. Z. Zhong, C. Yang and C.M. Lieber, “Silicon nanowires and nanowire heterostructures,” Nanosilicon 176-216 (ed. V. Kumar, Elsevier, 2008).

2007

293. O. Hayden, G. Zheng, P. Agarwal and C.M. Lieber, “Visualization of carrier depletion in semiconducting nanowires,” Small 3, 2048-2052 (2007). [supplementary graphic] [supplementary info]

292. W. Lu and C.M. Lieber, “Nanoelectronics from the bottom up,” Nat. Mater. 6, 841-850 (2007).

291. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C.M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885-890 (2007). [supplementary info]

290. Y. Hu, H.O.H. Churchill, D.J. Reilly, J. Xiang, C.M. Lieber and C.M. Marcus, “A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor,” Nat. Nanotechnol. 2, 622-625 (2007). [supplementary info]

289. X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li and C.M. Lieber, “InAs/InP radial nanowire heterostructures as high electron mobility devices,” Nano Lett. 7, 3214-3218 (2007).

288. C.M. Lieber, “The incredible shrinking circuit,” Sci. Am. Special Ed. 17, 64-71 (2007).

287. G. Yu, A. Cao and C.M. Lieber, “Large-area blown bubble films of aligned nanowires and carbon nanotubes,” Nat. Nanotechnol. 2, 372-377 (2007). [supplementary info]

286. A. Javey, S. Nam, R.S. Friedman, H. Yan and C.M. Lieber, “Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics,” Nano Lett. 7, 773-777 (2007).

285. G. Liang, J. Xiang, N. Kharche, G. Klimeck, C.M. Lieber and M. Lundstrom, “Performance analysis of a Ge/Si core/shell nanowire field-effect transistor,” Nano Lett. 7, 642-646 (2007).

284. F. Patolsky, B.P. Timko, G. Zheng and C.M. Lieber, “Nanowire-based nanoelectronic devices in the life sciences,” MRS Bull. 32, 142-149 (2007).

283. C.M. Lieber and Z.L. Wang, “Functional nanowires,” MRS Bull. 32, 99-104 (2007). [cover]

2006

282. J. Xiang, A. Vidan, M. Tinkham, R.M. Westervelt and C.M. Lieber, “Ge/Si nanowire mesoscopic Josephson junctions,” Nature Nanotechnol. 1, 208-213 (2006).

281. C. Yang, C.J. Barrelet, F. Capasso and C.M. Lieber, “Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors,” Nano Lett. 6, 2929-2934 (2006).

280. W. Lu and C.M. Lieber, “Semiconductor nanowires,” J. Phys. D: Appl. Phys. 39, R387-R406 (2006).

279. F. Patolsky, G. Zheng and C.M. Lieber, “Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species,” Nat. Protocols 1, 1711-1724 (2006).

278. R. Agarwal and C.M. Lieber, “Semiconductor nanowires: Optics and optoelectronics,” Appl. Phys. A: Mater. Sci. Proc. 85, 209-215 (2006).

277. Y. Li, F. Qian, J. Xiang and C.M. Lieber, “Nanowire electronic and optoelectronic devices,” Materials Today 9, 18-27 (2006).

276. F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng and C.M. Lieber, “Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays,” Science 313, 1100-1104 (2006). [supplementary info]

275. F. Patolsky, G. Zheng and C.M. Lieber, “Nanowire-based biosensors,” Anal. Chem. 78, 4260-4269 (2006).

274. Y. Li, J. Xiang, F. Qian, S. Gradecak, Y. Wu, H. Yan, D.A. Blom and C.M. Lieber, “Dopant-free GaN/AlN/AlGaN radial nanowire heterostructures as high electron mobility transistors,” Nano Lett. 6, 1468-1473 (2006). [supplementary info]

273. F. Patolsky, G. Zheng and C.M. Lieber, “Nanowire sensors for medicine and the life sciences,” Nanomedicine 1, 51-65 (2006).

272. J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C.M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature 441, 489-493 (2006). [supplementary info]

271. O. Hayden, R. Agarwal and C.M. Lieber, “Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection,” Nat. Mater. 5, 352-356 (2006). [supplementary info] [cover]

270. J.E. Savage, E. Rachlin, A. DeHon, C.M. Lieber and Y. Wu, “Radial addressing of nanowires,” J. Emerg. Technol. Comput. Syst. 2, 129-154 (2006).

269. C.J. Barrelet, J. Bao, M. Loncar, H.-G. Park, F. Capasso and C.M. Lieber, “Hybrid single-nanowire photonic crystal and microresonator structures,” Nano Lett. 6, 11-15 (2006).

2005

268. C. Yang, Z. Zhong and C.M. Lieber, “Encoding electronic properties by synthesis of axial modulation doped silicon nanowires,” Science 310, 1304-1307 (2005). [supplementary info]

267. F. Qian, S. Gradecak, Y. Li, C. Wen and C.M. Lieber, “Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,” Nano Lett. 5, 2287-2291 (2005). [supplementary info]

266. R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C.M. Lieber and D.G. Grier, “Manipulation and assembly of nanowires with holographic optical traps,” Opt. Express 13, 8906-8912 (2005).

265. S. Gradecak, F. Qian, Y. Li, H.-G. Park and C.M. Lieber, “GaN nanowire lasers with low lasing thresholds,” Appl. Phys. Lett. 87, 173111-1 – 173111-3 (2005).

264. A.B. Greytak, C.J. Barrelet, Y. Li and C.M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103-1 – 151103-3 (2005).

263. G. Zheng, F. Patolsky, Y. Cui, W.U. Wang and C.M. Lieber, “Multiplexed electrical detection of cancer markers with nanowire sensor arrays,” Nat. Biotechnol. 23, 1294-1301 (2005).

262. P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian and C.M. Lieber, “General synthesis of manganese-doped II-VI and III-V semiconductor nanowires,” Nano Lett. 5, 1407-1411 (2005).

261. W. Lu, J. Xiang, B.P. Timko, Y. Wu and C.M. Lieber, “One-dimensional hole gas in germanium/silicon nanowire heterostructures,” Proc. Natl. Acad. Sci. USA 102, 10046-10051 (2005). [Romanian translation]

260. M.C. McAlpine, R.S. Friedman and C.M. Lieber, “High-performance nanowire electronics and photonics and nanoscale patterning on flexible plastic substrates,” Proc. IEEE 93, 1357-1363 (2005).

259. Z. Zhong, Y. Fang, W. Lu and C.M. Lieber, “Coherent single charge transport in molecular-scale silicon nanowires,” Nano Lett. 5, 1143-1146 (2005).

258. P.D. Ashby and C.M. Lieber, “Ultra-sensitive imaging and interfacial analysis of patterned hydrophilic SAM surfaces using energy dissipation chemical force microscopy,” J. Am. Chem. Soc. 127, 6814-6818 (2005). [supplementary info]

257. R. Agarwal, C.J. Barrelet and C.M. Lieber, “Lasing in single cadmium sulfide nanowire optical cavities,” Nano Lett. 5, 917-920 (2005).

256. R.S. Friedman, M.C. McAlpine, D.S. Ricketts, D. Ham and C.M. Lieber, “High-speed integrated nanowire circuits,” Nature 434, 1085 (2005). [download pdf]

255. X. Duan and C.M. Lieber, “Semiconductor nanowires: Rational synthesis,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, J.A. Schwarz, Ed. (Marcel Dekker, Inc., 2005).

254. Y. Huang, X. Duan and C.M. Lieber, “Semiconductor nanowires: Nanoscale electronics and optoelectronics,” in Dekker Encyclopedia of Nanoscience and Nanotechnology, J.A. Schwarz, Ed. (Marcel Dekker, Inc., 2005).

253. F. Patolsky and C.M. Lieber, “Nanowire nanosensors,” Mater. Today 8, 20-28 (2005).

252. W.U. Wang, C. Chen, K. Lin, Y. Fang and C.M. Lieber, “Label-free detection of small-molecule-protein interactions by using nanowire nanosensors,” Proc. Natl. Acad. Sci. USA 102, 3208-3212 (2005).

251. Y. Huang, X. Duan and C.M. Lieber, “Nanowires for integrated multicolor nanophotonics,” Small 1, 142-147 (2005). [supplementary info]

2004

250. P.D. Ashby and C.M. Lieber, “Brownian force profile reconstruction of interfacial 1-nonanol solvent structure,” J. Am. Chem. Soc. 126, 16973-16980 (2004).

249. Y. Huang and C.M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires,” Pure Appl. Chem. 76, 2051-2068 (2004).

248. G. Zheng, W. Lu, S. Jin and C.M. Lieber, “Synthesis and fabrication of high-performance n-type silicon nanowire transistors,” Adv. Mater. 16, 1890-1893 (2004).

247. C.J. Barrelet, A.B. Greytak and C.M. Lieber, “Nanowire photonic circuit elements,” Nano Lett. 4, 1981-1985 (2004).

246. F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet and C.M. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett. 4, 1975-1979 (2004).

245. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C.M. Lieber, “Electrical detection of single viruses,” Proc. Natl. Acad. Sci. USA 101, 14017-14022 (2004).

244. L. Chen, C.L. Cheung, P.D. Ashby and C.M. Lieber, “Single-walled carbon nanotube AFM probes: Optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments,” Nano Lett. 4, 1725-1731 (2004).

243. D.C. Bell, Y. Wu, C.J. Barrelet, S. Gradecak, J. Xiang, B.P. Timko and C.M. Lieber, “Imaging and analysis of nanowires,” Microscopy Res. Technol. 64, 373-389 (2004).

242. D. Whang, S. Jin and C.M. Lieber, “Large-scale hierarchical organization of nanowires for functional nanosystems,” Japanese J. Appl. Phys. 43, 4465-4470 (2004).

241. Y. Wu, J. Xiang, C. Yang, W. Lu and C.M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 61-65 (2004).

240. L.J. Lauhon, M.S. Gudiksen and C.M. Lieber, “Semiconductor nanowire heterostructures,” Phil. Trans. R. Soc. Lond. A 362, 1247-1260 (2004).

239. A.B. Greytak, L.J. Lauhon, M.S. Gudiksen and C.M. Lieber, “Growth and transport properties of complementary germanium nanowire field-effect transistors,” Appl. Phys. Lett. 84, 4176-4178 (2004).

238. S. Jin, D. Whang, M.C. McAlpine, R.S. Friedman, Y. Wu and C.M. Lieber, “Scalable interconnection and integration of nanowire devices without registration,” Nano Lett. 4, 915-919 (2004).

237. D. Wang, F. Qian, C. Yang, Z. Zhong and C.M. Lieber, “Rational growth of branched and hyperbranched nanowire structures,” Nano Lett. 4, 871-874 (2004).

236. Y. Wu, Y. Cui, L. Huynh, C.J. Barrelet, D.C. Bell and C.M. Lieber, “Controlled growth and structures of molecular-scale silicon nanowires,” Nano Lett. 4, 433-436 (2004).

235. J. Hahm and C.M. Lieber, “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,” Nano Lett. 4, 51-54 (2004).

2003

234. M. M. Ziegler, C. A. Picconatto, J. C. Ellenbogen, A. DeHon, D. Wang, Z. Zhong and C. M. Lieber, “Scalability simulations for nanomemory systems integrated on the molecular scale,” Ann. N.Y. Acad. Sci. 1006, 312-330 (2003).

233. D. V. Vezenov, A. Noy and C. M. Lieber, “The effect of liquid-induced adhesion changes on the interfacial shear strength between self-assembled monolayers,” J. Adhesion Sci. Technol. 17, 1385-1401 (2003).

232. D. Bozovic, M. Bockrath, J. H. Hafner, C. M. Lieber, H. Park and M. Tinkham, “Plastic deformations in mechanically strained single-walled carbon nanotubes,” Phys. Rev. B 67, 033407/1-033407/4 (2003).

231. Z. Zhong, D. Wang, Y. Cui, M.W. Bockrath and C.M. Lieber, “Nanowire crossbar arrays as address decoders for integrated nanosystems,” Science 302, 1377-1379 (2003).

230. M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang and C.M. Lieber, “High-performance nanowire electronics and photonics on glass and plastic substrates,” Nano Lett. 3, 1531-1535 (2003).

229. Y. Cui, X. Duan, Y. Huang and C. M. Lieber, “Nanowires as building blocks for nanoscale science and technology,” in Nanowires and Nanobelts – Materials, Properties and Devices, Z.L. Wang, ed. 3-68 (Kluwer Academic/Plenum Publishers, 2003).

228. D. Whang, S. Jin, Y. Wu and C.M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano Lett. 3, 1255-1259 (2003).

227. C.J. Barrelet, Y. Wu, D.C. Bell and C.M. Lieber, “Synthesis of CdS and ZnS nanowires using single-source molecular precursors,” J. Am. Chem. Soc. 125, 11498-11499 (2003).

226. C.M. Lieber, “Nanoscale science and technology: Building a big future from small things,” MRS Bull. 28, 486-491 (2003).

225. D. Whang, S. Jin and C.M. Lieber, “Nanolithography using hierarchically assembled nanowire masks,” Nano Lett. 3, 951-954 (2003).

224. X. Duan, Y. Huang, Y. Cui and C. M. Lieber, “Nanowire nanoelectronics assembled from the bottom-up” in Molecular Nanoelectronics, M. A. Reed and T. Lee (Eds.) 199-227 (American Scientific Publishers, 2003).

223. D. Wang and C.M. Lieber, “Inorganic materials: Nanocrystals branch out,” Nat. Mater. 2, 355-356 (2003).

222. M.C. McAlpine, R.S. Friedman, and C.M. Lieber, “Nanoimprint lithography for hybrid plastic electronics,” Nano Lett. 3, 443-445 (2003).

221. Z. Zhong, F. Qian, D. Wang and C.M. Lieber, “Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices,” Nano Lett. 3, 343-346 (2003).

220. X. Duan, Y. Huang and C.M. Lieber, “Nanowire nanocircuits,” in 2003 McGraw-Hill Yearbook of Science and Technology, E. Geller, J. Weil, D. Blumel, A. Rappaport, (Eds.), 272-276 (McGraw Hill, 2003).

219. Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C.M. Lieber, “High performance silicon nanowire field effect transistors,” Nano Lett. 3, 149-152 (2003).

218. X. Duan, Y. Huang, R. Agarwal and C.M. Lieber, “Single-nanowire electrically driven lasers,” Nature 421, 241-245 (2003).

2002

217. A. Jorio, F. M. Matinaga, A. Righi, M. S. S. Dantas, M. A. Pimenta, A. G. Souza Filho, J. Mendes Filho, J. H. Hafner, C. M. Lieber, R. Saito, G. Dresselhaus and M. S. Dresselhaus, “Resonance Raman scattering: Nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes,” Brazilian J. Phys. 32, 921-924 (2002).

216. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber and R. Saito, “G-band Raman spectra of isolated single-wall carbon nanotubes: Diameter and chirality dependence,” Mater. Res. Soc. Symp. Proc. 706, 187-192 (2002).

215. A.G. Souza Filho, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, J.H. Hafner, C.M. Lieber, M.A. Pimenta and R. Saito, “Dependence of the second-order G-band profile on the electronic structure of single-wall nanotubes,” Mater. Res. Soc. Symp. Proc. 706, 181-186 (2002).

214. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, M.A. Pimenta, J.H. Hafner, C.M. Lieber and R. Saito, “G-band resonant Raman study of 62 isolated single-wall carbon nanotubes,” Phys. Rev B: Condens. Matter Mater. Phys. 65, 155412/1-155412/9 (2002).

213. A. Jorio, A.G. Souza Filho, V.W Brar, A.K. Swan, M.S. Unlu, B.B. Goldberg, A. Righi, J.H. Hafner, C.M. Lieber, R. Saito, G. Dresselhaus and M.S. Dresselhaus, “Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects,” Phys. Rev B: Condens. Matter Mater. Phys. 65, 121402/1-035404/4 (2002).

212. A.G. Souza Filho, A. Jorio, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A.K. Swan, M.S. Unlu, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber and M.A. Pimenta, “Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra,” Chem. Phys Lett. 354, 62-68 (2002).

211. A.G. Souza Filho, A. Jorio, A.K. Swan, M.S. Unlu, B.B. Goldberg, R. Saito, J.H. Hafner, C.M. Lieber, M.A. Pimenta, G. Dresselhaus and M.S. Dresselhaus, “Anomalous two-peak G-band Raman effect in one isolated single-wall carbon nanotube,” Phys. Rev B: Condens. Matter Mater. Phys. 65, 085417/1-035404/8 (2002).

210. A.G. Souza Filho, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, R. Saito, A.K. Swan, M.S. Unlu, B.B. Goldberg, J.H. Hafner, C.M. Lieber and M.A. Pimenta, “Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes,” Phys. Rev B: Condens. Matter Mater. Phys. 65, 035404/1-035404/6 (2002).

209. M. Ouyang, J.L. Huang and C.M. Lieber, “Fundamental electronic properties and applications of single-walled carbon nanotubes,” Accounts Chem. Res. 35, 1018-1025 (2002).

208. E. Joselevich and C.M Lieber, “Vectorial growth of metallic and semiconducting single-wall carbon nanotubes,” Nano Lett. 2, 1137-1141 (2002).

207. L.J. Lauhon, M.S. Gudiksen, D. Wang and C.M. Lieber, “Epitaxial core-shell and core-multi-shell nanowire heterostructures,” Nature 420, 57-61 (2002).

206. C.M. Lieber, “Nanoscience and nanotechnology: Building a big future from small things,” Update. New York, NY: New York Academy of Sciences, October 2002, p.6-9.

205. D.V. Vezenov, A.V. Zhuk, G.M. Whitesides and C.M. Lieber, “Chemical force spectroscopy in heterogeneous systems: Intermolecular interactions involving epoxy polymer, mixed monolayers, and polar solvents,” J. Am. Chem. Soc. 124, 10578-10588 (2002).

204. T.W. Odom, J. Huang and C.M. Lieber, “Single-walled carbon nanotubes. From fundamental studies to new device concepts,” Ann. N. Y. Acad. Sci. 960, 203-215 (2002). [download pdf]

203. M. Ouyang, J.L. Huang and C.M. Lieber, “Scanning tunneling microscopy studies of the one-dimensional electronic properties of single-walled carbon nanotubes,” Annu. Rev. Phys. Chem. 53, 201-220 (2002).

202. X. Duan, Y. Huang, Y. Cui and C.M. Lieber, “Nonvolatile memory and programmable logic from molecule-gated nanowires,” Nano Lett. 2, 487-490 (2002)

201. M.S. Gudiksen, J. Wang and C.M. Lieber, “Size-dependent photoluminescence from single indium phosphide nanowires,” J. Phys. Chem B 106, 4036-4039 (2002).

200. L. Chen, K.A. Haushalter, C.M. Lieber and G.L. Verdine, “Direct visualization of a DNA glycosylase searching for damage,” Chem. Biol. 9, 345-350 (2002).

199. C.L. Cheung, A. Kurtz, H. Park and C.M. Lieber, “Diameter-controlled synthesis of carbon nanotubes,” J. Phys. Chem B 106, 2429-2433 (2002).

198. T.W. Odom, J.L. Huang and C.M. Lieber, “STM studies of single-walled carbon nanotubes,” J. Phys. Condens. Matter 14, R145-R167 (2002).

197. Y. Huang, X. Duan, Y. Cui and C.M. Lieber, “Gallium nitride nanowire nanodevices,” Nano Lett. 2, 101-104 (2002).

196. C.M. Lieber, “Nanowire superlattices,” Nano Lett. 2, 81-82 (2002).

195. M. Ouyang, J.-L. Huang and C.M. Lieber, “One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering,” Phys. Rev. Lett. 88, 066804-1 – 066804-4 (2002).

194. M.S. Gudiksen, L.J. Lauhon, J. Wang, D. Smith and C.M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature 415, 617-620 (2002).

193. E.T. Powers, S.I. Yang, C.M. Lieber and J.W. Kelly, “Ordered Langmuir-Blodgett films of amphiphilic beta-hairpin peptides imaged by atomic force microscopy,” Angew. Chem. Intl. Ed. 41, 127-130 (2002).

2001

192. R. Saito, A. Jorio, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M.S. Dresselhaus “Chirality-dependent G-band Raman intensity of carbon nanotubes,” Phys. Rev B: Condens. Matter Mater. Phys. 64, 085312/1-085312/7 (2001).

191. M.A. Pimenta, A. Jorio, S.D.M. Brown, A.G. Souza Filho, G. Dresselhaus, J.H. Hafner, C.M. Lieber, R. Saito and M.S. Dresselhaus “Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes,” Phys. Rev B: Condens. Matter Mater. Phys. 64, 041401/1-041401/4 (2001).

190. A.G. Souza Filho, A. Jorio, J.H. Hafner, C.M. Lieber, R. Saito, M.A. Pimenta, G. Dresselhaus and M.S. Dresselhaus “Electronic transition energy Eii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes Resonant Raman intensity ratio,” Phys. Rev B: Condens. Matter Mater. Phys. 63, 241414/1-241404/4 (2001).

189. A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, R. Saito, J.H. Hafner, C.M. Lieber, F.M. Matinaga, M.S.S. Dantas and M.A. Pimenta “Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering,” Phys. Rev B: Condens. Matter Mater. Phys. 63, 245416/1-245416/4 (2001).

188. G.R. Schnitzler, C.L. Cheung, J.H. Hafner, A.J. Saurin, R.E. Kingston and C.M. Lieber “Direct imaging of human SWI/SNF remodeled mono- and polynucleosomes by atomic force microscopy employing carbon nanotube tips,” Mol. Cell. Biol. 21, 8504-8511 (2001).

187. Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim and C. M. Lieber “Logic gates and computation from assembled nanowire building blocks,” Science 294, 1313-1317 (2001).

186. C.M. Lieber “The incredible shrinking circuit,” Sci. Am. 285, 50-56 (2001).

185. J. Wang, M.S. Gudiksen, X. Duan, Y. Cui and C.M. Lieber “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science 293, 1455-1457 (2001).

184. Y. Cui, Q. Wei, H. Park and C.M. Lieber “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species,” Science 293, 1289-1292 (2001).

183. J.H. Hafner, C.L. Cheung, A.T. Woolley, and C.M. Lieber, “Structural and functional imaging with carbon nanotube AFM probes,” Progr. Biophys. Mol. Biol. 77, 73-110 (2001).

182. D. Bozovic, M. Bockrath, J.H. Hafner, C.M. Lieber, H. Park and M. Tinkham, “Electronic properties of mechanically induced kinks in single-walled carbon nanotubes,” Appl. Phys. Lett. 78, 3693-3695 (2001).

181. M.S. Gudiksen, J. Wang and C.M. Lieber, “Synthetic control of the diameter and length of single crystal semiconductor nanowires,” J. Phys. Chem. B 105, 4062-4064 (2001).

180. M. Ouyang, J.L. Huang, C.L. Cheung and C.M. Lieber, “Energy gaps in “metallic” single-walled carbon nanotubes,” Science 292, 702-705 (2001).

179. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang and C.M. Lieber, “Diameter-controlled synthesis of single-crystal silicon nanowires,” Appl. Phys. Lett. 78, 2214-2216 (2001).

178. T.W. Odom, J.H. Hafner and C.M. Lieber, “Scanning probe microscopy studies of carbon nanotubes,” in Topics Appl. Phys., M.S. Dresselhaus, G. Dresselhaus, P. Avouris, (Eds)., 80, 173-211 (Springer-Verlag, 2001).

177. Y. Cui and C.M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291, 851-853 (2001).

176. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus and M.S. Dresselhaus, “Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering,” Phys. Rev. Lett. 86, 1118-1121 (2001).

175. J. Hafner, C.L. Cheung, T.H. Oosterkamp and C.M. Lieber, “High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies,” J. Phys. Chem. B 105, 743-746 (2001).

174. Y. Huang, X. Duan, Q. Wei and C.M. Lieber, “Directed assembly of one-dimensional nanostructures into functional networks,” Science 291, 630-633 (2001).

173. M. Bockrath, W. Liang, D. Bozovic, J.H. Hafner, C.M. Lieber, M. Tinkham and H. Park, “Resonant electron scattering by defects in single-walled carbon nanotubes,” Science 291, 283-285 (2001).

172. M. Ouyang, J.L. Huang, C.L. Cheung and C.M. Lieber, “Atomically resolved single-walled carbon nanotube intramolecular junctions,” Science 291, 97-100 (2001).

171. X. Duan, Y. Huang, Y. Cui, J. Wang and C.M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001).

2000 and before

170. P. Kim, J. Zhang and C.M. Lieber, “Charge density wave formation in nanocrystals,” in Solid State Physics, H. Ehrenreich and F. Spaepen, eds. (Academic Press, 2000).

169. T.W. Odom, J.L. Huang, C.L. Cheung and C.M. Lieber, “Magnetic clusters on single-walled carbon nanotubes: The Kondo effect in a one-dimensional host,” Science 290, 1549-1552 (2000).

168. A.T. Woolley, C.L. Cheung, J.H. Hafner and C.M. Lieber, “Structural biology with carbon nanotube AFM probes,” Chem. Biol. 7, R193-R204 (2000).

167. P.D. Ashby, L. Chen and C.M. Lieber, “Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy,” J. Am. Chem. Soc. 122, 9467-9472 (2000).

166. M.S. Gudiksen and C.M. Lieber, “Diameter-selective synthesis of semiconductor nanowires,” J. Am. Chem. Soc. 122, 8801-8802 (2000).

165. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung and C.M. Lieber, “Carbon nanotube-based nonvolatile random access memory for molecular computing,” Science 289, 94-97 (2000).

164. A.T. Woolley, C. Guillemette, C.L. Cheung, D.E. Housman and C.M. Lieber, “Direct haplotyping of kilobase-size DNA using carbon nanotube probes,” Nat. Biotechnol. 18, 760-763 (2000).

163. Y. Cui, X. Duan, J. Hu and C.M. Lieber, “Doping and electrical transport in silicon nanowires,” J. Phys. Chem. B 104, 5213-5216 (2000).

162. Q. Wei and C.M. Lieber, “Synthesis of single crystal bismuth-telluride and lead-telluride nanowires for new thermoelectrical materials,” Mater. Res. Soc. Symp. Proc. 581, 219-223 (2000).

161. Q. Wei and C.M. Lieber, “Solution-based synthesis of magnesium oxide nanorods,” Mater. Res. Soc. Symp. Proc. 581, 3-7 (2000).

160. C.L. Cheung, J.H. Hafner, T.W. Odom, K. Kim and C.M. Lieber, “Growth and fabrication with single-walled carbon nanotube probe microscopy tips,” Appl. Phys. Lett. 76, 3136-3138 (2000).

159. C.L. Cheung, J.H. Hafner and C.M. Lieber, “Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging,” Proc. Natl. Acad. Sci. USA 97, 3809-3813 (2000).

158. T.W. Odom, J.L. Huang, P. Kim and C.M. Lieber, “Structure and electronic properties of carbon nanotubes,” J. Phys. Chem. B 104, 2794-2809 (2000).

157. X. Duan, J. Wang and C.M. Lieber, “Synthesis and optical properties of gallium arsenide nanowires,” Appl. Phys. Lett. 76, 1116-1118 (2000).

156. X. Duan and C.M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2000).

155. X. Duan and C.M. Lieber, “Laser-assisted catalytic growth of single crystal GaN nanowires,” J. Am. Chem. Soc. 122, 188-189 (2000).

154. L. Venkataraman and C.M. Lieber, “Molybdenum selenide molecular wires as one-dimensional conductors,” Phys. Rev. Lett. 83, 5334-5337 (1999).

153. P. Kim and C.M. Lieber, “Nanotube nanotweezers,” Science 286, 2148 – 2150 (1999).

152. P. Kim, T.W. Odom, J.L. Huang and C.M. Lieber, “Electronic structures and applications of carbon nanotubes,” in Electronic Properties of Novel Materials Science and Technology of Molecular Nanostructures: Xiii International Winterschool (AIP Conference Proceedings), H. Kuzmany, J. Fink, M. Mehring, and S. Roth, eds. (Springer Verlag, 1999).

151. P. Kim, Z. Yao, C.A. Bolle, and C.M. Lieber, “Structure of flux line lattices with weak disorder at large length scales,” Phys. Rev. B 60, 12589-12592 (1999).

150. J. Wang, K.C. Rose and C.M. Lieber, “Load-independent friction: MoO3 nanocrystal lubricants,” J. Phys. Chem. B 103, 8405-8409 (1999).

149. J.H. Hafner, C.L. Cheung and C.M. Lieber, “Direct growth of single-walled carbon nanotube scanning probe microscopy tips,” J. Am. Chem. Soc. 121, 9750-9751 (1999).

148. A. Yazdani and C.M. Lieber, “Up close and personal to atoms,” Nature 401, 227-230 (1999).

147. J.D. Harper, S.S. Wong, C.M. Lieber and P.T. Lansbury, Jr., “Assembly of ABeta amyloid protofibrils: An in vitro model for a possible early event in Alzheimer’s disease,” Biochem. 38, 8972-8980 (1999).

146. H. Dai, J. Liu and C.M. Lieber, “Elucidating complex charge density wave structures in low-dimensional materials by scanning tunneling microscopy,” in Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals, F.W. Boswell and J.C. Bennett, eds. (Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998).

145. S.S. Wong, A.T. Woolley, E. Joselevich and C.M. Lieber, “Functionalization of carbon nanotube AFM probes using tip-activated gases,” Chem. Phys. Lett. 306, 219 (1999).

144. J. Hu, T.W. Odom and C.M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,” Accounts Chem. Res. 32, 435-445 (1999).

143. J. Hu, M. Ouyang, P. Yang and C.M. Lieber, “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires,” Nature 399, 48-51 (1999).

142. J.H. Hafner, C.L. Cheung and C.M. Lieber, “Growth of nanotubes for probe microscopy tips,” Nature 398, 761-762 (1999).

141. P. Kim, T.W. Odom, J.-L. Huang and C.M. Lieber, “Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states,” Phys. Rev. Lett. 82, 1225-1228 (1999).

140. S.S. Wong, A.T. Woolley, T.W. Odom, J.L. Huang, P. Kim, D.V. Vezenov and C.M. Lieber, “Single-walled carbon nanotube probes for high-resolution nanostructure imaging,” Appl. Phys. Lett. 73, 3465-3467 (1998).

139. T.W. Odom, J.L. Huang, P. Kim, M. Ouyang, and C.M. Lieber, “Scanning tunneling microscopy and spectroscopy studies of single wall carbon nanotubes,” J. Mater. Res. 13, 2380-2388 (1998).

138. S.S. Wong, A.T. Woolley, E. Joselevich, C.L. Cheung and C.M. Lieber, “Covalently-functionalized single-walled carbon nanotube probe tips for chemical force microscopy,” J. Am. Chem. Soc. 120, 8557-8558 (1998). [supplementary info 1] [supplementary info 2]

137. C.M. Lieber, “One-dimensional nanostructures: Chemistry, physics and applications,” Solid State Comm. 107, 607-616 (1998).

136. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung and C.M. Lieber, “Covalently functionalized nanotubes as nanometer probes for chemistry and biology,” Nature 394, 52-55 (1998).

135. J. Hu, P. Yang and C.M. Lieber, “Nitrogen-driven structural transformation in carbon nitride materials,” Appl. Surf. Sci. 127-129, 569-573 (1998)

134. D.V. Vezenov, A. Noy and C.M. Lieber, “Chemical force microscopy: Probing and imaging interactions between functional groups,” in Proc. Scanning Probe Microscopy in Polymers Symp., 312-320 (American Chemical Society: Washington, DC, 1998).

132. J. Hu, P. Yang and C.M. Lieber, “Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials,” Phys. Rev. B 57, 3185-3188 (1998).

131. S.S. Wong, J.D. Harper, P.T. Lansbury and C.M. Lieber, “Carbon nanotube tips: High-resolution probes for imaging biological systems,” J. Am. Chem. Soc. 120, 603-604 (1998).

130. A.M. Morales and C.M. Lieber, “A Laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208-211 (1998).

129. T. W. Odom, J.L. Huang, P. Kim and C.M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature 391, 62-64 (1998).

128. J.D. Harper, C.M. Lieber and P. T. Lansbury, “Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-beta protein,” Chem. Biol. 4, 951-959 (1997).

127. P. Yang and C.M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res. 12, 2981-2996 (1997).

126. J. Zhang, J. Liu, J.L. Huang, P. Kim and C.M. Lieber, “Creation of nanocrystals via a tip-induced solid-solid transformation,” Mater. Res. Soc. Symp. Proc. 466, 89-94 (1997).

125. E.W. Wong, P.E. Sheehan and C.M. Lieber, “Nanobeam mechanics: Elasticity, strength and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997).

124. C.M. Lieber and P. Yang, “High-temperature superconductors,” Science 277, 1909-1910 (1997).

123. C.M. Lieber, D. Vezenov, A. Noy and C. Sanders, “Chemical force microscopy,” Microscopy and Microanalysis 3, 1253-1254 (1997).

122. A. Noy, D. Vezenov, J.F. Kayyem, T.J. Meade and C.M. Lieber, “Stretching and breaking duplex DNA by chemical force microscopy,” Chem. Biol. 4, 519-527 (1997).

121. A. Noy, D.V. Vezenov and C.M. Lieber, “Chemical force microscopy,” Annu. Rev. Mater. Sci. 27, 381-421 (1997).

120. M.R. Eskildsen, P.L. Gammel, B.P. Barber, A.P. Ramirez, D.J. Bishop, N.H. Andersen, K. Mortensen, C.A. Bolle, C.M. Lieber and P.C. Canfield, “Structural stability of the square flux line lattice in YNI2B2C and LuNi2B2C studied with small angle neutron scattering,” Phys. Rev. Lett. 79, 487-490 (1997).

119. P. Yang and C.M. Lieber, “Columnar defect formation in nanorod/Tl2Ba2Ca2Cu3Oz superconducting composites,” Appl. Phys. Lett. 70, 3158-3160 (1997).

118. C.M. Lieber, A.M. Morales, P.E. Sheehan, E.W. Wong and P. Yang, “One-dimensional nanostructures: Rational synthesis, novel properties and applications,” in Proceedings of the Robert A. Welch Foundation 40th Conference on Chemical Research: Chemistry on the Nanometer Scale, 165-187 (The Robert A. Welch Foundation: Houston, TX, 1997).

117. P. Yang, Z.J. Zhang, J. Hu and C.M. Lieber, “Pulsed laser deposition of diamond-like carbon thin films: Ablation dynamics and growth,” Mater. Res. Soc. Symp. Proc. 438, 593-598 (1997).

116. J.D. Harper, S.S. Wong, C.M. Lieber and P.T. Lansbury, Jr., “Observation of metastable A” amyloid protofibrils by atomic force microscopy”, Chem. Biol. 4, 119-125 (1997).

115. M.R. Eskildsen, P.L. Gammel, B.P. Barber, U. Yaron, A.P. Ramirez, D.A. Huse, D.J. Bishop, C. Bolle, C.M. Lieber, S. Oxx, S. Sridhar, N.H. Andersen, K. Mortensen and P.C. Canfield, “Observation of a field-driven structural phase transition in the flux line lattice in ErNi2B2C,” Phys. Rev. Lett. 78, 1968-1971 (1997).

114. D.V. Vezenov, A. Noy, L.F. Rozsnyai and C.M. Lieber, “Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy,” J. Am. Chem. Soc. 119, 2006-2015 (1997).

113. P. Kim, Z. Yao and C.M. Lieber, “Vortex lattice structure in Bi2Sr2CaCu2O8+δ at high temperatures,” Phys. Rev. Lett. 77, 5118-5121 (1996).

112. P. Kim, Z. Yao and C.M. Lieber, “Structure of vortex arrays by magnetic decoration,” 8th IWCC Conf. Proc. 3-10 (World Scientific Publishing Co.: Singapore, 1996).

111. A.J. Stevens, T. Koga, C.B. Agee, M.J. Aziz and C.M. Lieber, “Stability of carbon nitride materials at high pressure and temperature,” J. Am. Chem. Soc. 118, 10900-10901 (1996).

110. J. Zhang, J. Liu, J.L. Huang, P. Kim and C.M. Lieber, “Creation of nanocrystals through a solid-solid phase transition induced by an STM tip,” Science 274, 757-760 (1996).

109. P.E. Sheehan and C.M. Lieber, “Nanomachining, manipulation and fabrication by force microscopy,” Nanotechnology 7, 236-240 (1996).

108. C.M. Lieber, “Chemical force microscopy,” in 1997 Yearbook of Science and Technology, 85-88, S. Parker, Editor-in-Chief (McGraw-Hill, Inc.: New York, 1996).

107. P. Yang and C.M. Lieber, “Nanorod-superconductor composites: A pathway to high critical current density materials,” Science 273, 1836-1840 (1996).

106. E.W. Wong, B.W. Maynor, L.D. Burns and C.M. Lieber, “Growth of metal carbide nanotubes and nanorods,” Chem. Mater. 8, 2041-2046 (1996).

105. C.M. Lieber, E.W. Wong, H. Dai, B.W. Maynor and L.D. Burns, “Growth and structure of carbide nanorods,” Mater. Res. Soc. Symp. Proc. 410, 103-112 (1996).

104. J. Liu and C.M. Lieber, “Electron tunneling microscopy: A direct probe of metal substitution in BiSrCaCuO superconductors,” Inorg. Chim. Acta 243, 305-308 (1996).

103. P.E. Sheehan and C.M. Lieber, “Nanotribology and nanofabrication of MoO3 structures by force microscopy,” Science 272, 1158-61 (1996).

102. Z.J. Zhang, J.L. Huang, S. Fan and C.M. Lieber, “Phases and physical properties of carbon nitride thin films prepared by pulsed laser deposition,” Mater. Sci. & Eng. A 209, 5-9 (1996).

101. J. Liu, J.L. Huang and C.M. Lieber, “Probing complex low-dimensional solids with scanning probe microscopes: From charge density waves to high-temperature superconductivity,” J. Vac. Sci. Tech. 14, 1064-1069 (1996).

100. Z.J. Zhang, S. Fan, J. Huang and C.M. Lieber, “Diamond-like properties in a single phase carbon nitride solid,” Appl. Phys. Lett. 68, 2639-2641 (1996).

99. H. Dai, E.W. Wong, and C.M. Lieber, “Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes,” Science 272, 523-526 (1996).

98. C.M. Lieber, J. Liu and P.E. Sheehan, “Understanding and manipulating inorganic materials using scanning probe microscopes,” Angew. Chem. Int. Ed. Engl. 35, 686-704 (1996).

97. C.M. Lieber, J. Liu and P.E. Sheehan, “Anorganische Materialien mit Hilfe von Rastersondenmikroskopen verstehen und manipulieren,” Angew. Chem. Int. Ed. Ger. 108, 748-768 (1996).

96. Z.J. Zhang, S. Fan, J.L. Huang, and C.M. Lieber, “Pulsed laser deposition and physical properties of carbon nitride thin films,” J. Elec. Mater. 25, 57-61 (1995).

95. C.M. Lieber and Z.J. Zhang, “Carbon nitride solids: Potential alternatives to diamond,” Chem. Ind. 22, 922-25 (1995).

94. Z.J. Zhang, P. Yang, and C.M. Lieber, “Growth and properties of carbon nitride thin films,” Mat. Res. Soc. Symp. Proc. 388, 271-80 (1995).

93. S. Yoon, Z. Yao, H. Dai, and C.M. Lieber, “Elastic properties of flux-line arrays in high-Tc superconductors probed by two-sided decoration,” Science 270, 270-73 (1995).

92. C.M. Lieber, “Carbon nitride,” in 1996 Yearbook of Science and Technology, 40-42, S. Parker, Editor-in-Chief (McGraw-Hill, Inc.: New York, 1995).

91. A. Noy, C.D. Frisbie, L.F. Rozsnyai, M.S. Wrighton and C.M. Lieber, “Chemical force microscopy: Exploiting chemically-modified tips to quantify adhesion, friction, and functional group distributions in molecular assemblies,” J. Am. Chem. Soc. 117, 7943-7951 (1995).

90. H. Dai, E.W. Wong, Y.Z. Lu, S. Fan and C.M. Lieber, “Synthesis and characterization of carbide nanorods”, Nature 375, 769-72 (1995).

89. Z.J. Zhang, S. Fan and C.M. Lieber, “Growth and composition of covalent carbon nitride solids,” Appl. Phys. Lett. 66, 3582-3584 (1995).

88. U.C. Täuber, H. Dai, D.R. Nelson and C.M. Lieber, “Coulomb gap and correlated vortex pinning in superconductors,” Phys. Rev. Lett. 74, 5132-5135 (1995).

87. Z. Zhang and C.M. Lieber, “Characterization of complex materials by scanning tunneling microscopy: A look at superconductors with high critical temperatures,” in Materials Chemistry: An Emerging Discipline, Advances in Chemistry Series 245, L. Interrante, L. Casper and A. Ellis, eds. (American Chemical Society: Washington, 1995). [download pdf part 1 | download pdf part 2]

86. Z. Yao, S. Yoon, H. Dai, S. Fan and C.M. Lieber, “Path of magnetic flux-lines through high-Tc copper oxide superconductors,” Nature 371, 777-779 (1994).

85. C.D. Frisbie, L.F. Rozsnyai, A. Noy, M.S. Wrighton and C.M. Lieber, “Functional group imaging by chemical force microscopy,” Science 265, 2071-2074 (1994).

84. H. Dai, S. Yoon, J. Liu, R.C. Budhani and C.M. Lieber, “Simultaneous observation of columnar defects and magnetic flux lines in high-temperature Bi2Sr2CaCu2O8 superconductors,” Science 265, 1552-1555 (1994).

83. A.M. Morales, P. Yang and C.M. Lieber, “Preparation of layered Sr2CuO3+δ by pulsed laser deposition: Rational synthesis and doping of a metastable copper oxide material,” J. Am. Chem. Soc. 116, 8360-8361 (1994).

82. C. Niu and C.M. Lieber, “Thin film synthesis of solids,” in Encyclopedia of Inorganic Chemistry, 8, 4151-4158, B. King, ed. (John Wiley & Sons, Ltd: Sussex, 1994).

81. S.M. Argentine, A.H. Francis, C.C. Chen, C.M. Lieber and J.S. Siegel, “Unusual photoluminescence behavior of C70,” J. Phys. Chem. 98, 7350-7354 (1994).

80. S. Yoon, H. Dai, J. Liu and C.M. Lieber, “Surface pinning as a determinant of the bulk flux-line lattice structure in copper oxide superconductors,” Science 265, 215 (1994).

79. C.M. Lieber and Z.J. Zhang, “Synthesis of covalent carbon nitride solids: Alternatives to diamond,” Adv. Mat. 6, 497 (1994).

78. C.M. Lieber, “Scanning tunneling microscopy,” Chem. Eng. News 72, 28 (1994).

77. C.M. Lieber and C.-C. Chen, “Preparation of fullerenes and fullerene-based materials,” in Solid State Physics, Vol. 48, H. Ehrenreich and F. Spaepen, eds. (Academic Press: San Diego, 1994).

76. C.M. Lieber and Z. Zhang, “Physical properties of metal-doped fullerene superconductors,” in Solid State Physics, Vol. 48, H. Ehrenreich and F. Spaepen, eds. (Academic Press: San Diego, 1994).

75. J. Liu, Y. Li and C.M. Lieber, “Intrinsic features of Bi2Sr2CaCu2O8+” tunneling spectra: Scaling and symmetry of the energy gap,” Phys. Rev. B 49, 6234 (1994).

74. R. Movshovich, J.D. Thompson, C.-C. Chen and C.M. Lieber, “Pressure dependence of the superconducting transition temperature in nominal Rb0.5Cs2.5C60,” Phys. Rev. B 49, 3619-3621 (1994).

73. H. Dai, J. Liu and C.M. Lieber, “Surface pinning and grain boundary formation in magnetic flux-line lattices of Bi2Sr2CaCu2O8+δ high-Tc superconductors,” Phys. Rev. Lett. 72, 748-751 (1994).

72. C.M. Lieber, “Modification and manipulation of layered materials using scanned probe microscopies,” in The Technology of Proximal Probe Lithography, C.R.K. Marrian, ed. (SPIE Optical Engineering Press: Bellingham, 1993).

71. H. Dai and C.M. Lieber, “Scanning tunneling microscopy studies of low-dimensional materials: Charge density wave pinning and melting in two dimensions,” Ann. Rev. Phys. Chem. 44, 237 (1993).

70. C. Niu, Y.Z. Lu and C.M. Lieber, “Experimental realization of the covalent solid carbon nitride,” Science 261, 334 (1993).

69. D. Zhang, J.R. Norris, P.J. Krusic, E. Wasserman, C.-C. Chen and C.M. Lieber, “Time-resolved EPR and Fourier Transform EPR study of triplet C60. Determinations of T1 and the 13C hyperfine coupling constant,” J. Phys. Chem. 97, 5886 (1993).

68. Y. Li, J. Liu and C.M. Lieber, “Dependence of the energy gap on Tc: Absence of scaling in the copper oxide superconductors,” Phys. Rev. Lett. 70, 3494-3497 (1993).

67. Z. Zhang and C.M. Lieber, “Nanotube structure and electronic properties probed by scanning tunneling microscopy,” Appl. Phys. Lett. 62, 2792-2794 (1993).

66. C.M. Lieber and Y. Kim, “Nanomachining and manipulation with the atomic force microscope,” Adv. Mat. 5, 392 (1993).

65. Y. Li and C.M. Lieber, “The energy gap in the high-Tc copper oxide superconductors,” Mod. Phys. Lett. B. 7, 143 (1993).

64. H. Dai and C.M. Lieber, “Charge density wave pinning and disorder in two dimensions,” J. Phys. Chem. 97, 2362 (1993).

63. Z. Zhang and C.M. Lieber, “Measurement of the energy gap in oxygen-annealed Bi2Sr2CaCu2O(8+delta) high-Tc superconductors by tunneling spectroscopy,” Phys. Rev. B. 47, 3423 (1993).

62. C.-C. Chen and C.M. Lieber, “Isotope effect and superconductivity in metal-doped C60,” Science 259, 655 (1993).

61. C. Niu and C.M. Lieber, “Exploiting laser based methods for low-temperature solid-state synthesis: Growth of a series of metastable (Sr1-xMx)1-δCuO2 materials,” J. Am. Chem. Soc. 115, 137-144 (1993).

60. C. Niu and C.M. Lieber, “Growth of the infinite layer phase of Sr1-xNdxCuO2 by laser ablation,” Appl. Phys. Lett. 61, 1712-1714 (1992).

59. J.-L. Huang, Y.-E. Sung and C.M. Lieber, “Field-induced surface modification on the atomic scale by scanning tunneling microscopy,” Appl. Phys. Lett. 61, 1528-1530 (1992).

58. H. Dai and C.M. Lieber, “Solid-hexatic-liquid phases in two-dimensional charge-density waves,” Phys. Rev. Lett. 69, 1576-1579 (1992).

57. Z. Zhang and C.M. Lieber, “Oxygen doping Bi2Sr2CaCu2O8+” superconductors: Variations in the BiO-layer electronic states determined by scanning tunneling microscopy,” Phys. Rev. B 46, 5845-5848 (1992).

56. Y. Kim and C.M. Lieber, “Machining oxide thin films with an atomic force microscope: Pattern and object formation on the nanometer scale,” Science 257, 375-377 (1992). [download pdf]

55. Y. Li, J.L. Huang and C.M. Lieber, “Temperature dependence of the energy gap in Bi2Sr2CaCu2O8 superconductors by high-resolution electron-energy-loss spectroscopy,” Phys. Rev. Lett. 68, 3240-3243 (1992).

54. C. Niu and C.M. Lieber, “Low-temperature growth of the infinite layer phase of SrCuO2 by pulsed laser deposition,” J. Am. Chem. Soc. 114, 3570-3571 (1992).

53. C. Niu and C.M. Lieber, “The local structure of Bi2.2Sr1.8Cu1-xFexOy single crystals determined by scanning tunneling microscopy,” J. Phys. Chem. 96, 3419-3423 (1992).

52. C.-C. Chen and C.M. Lieber, “Synthesis of pure 13C60 and determination of the isotope effect for fullerene superconductors,” J. Am. Chem. Soc. 114, 3141-3142 (1992).

51. S.P. Kelty and C.M. Lieber, “Scanning tunneling microscopy investigations of graphite intercalation compounds,” CRC Critical Rev. Surf. Sci. 1(4), 217 (1992).

50. Z. Zhang and C.M. Lieber, “Determination of the local structure and electronic states of high-Tc superconductors by scanning tunneling microscopy,” J. Phys. Chem. 96, 2030-2038 (1992).

49. Y. Kim, E.C. Long, J.K. Barton and C.M. Lieber, “Imaging of oligonucleotide-metal complexes by scanning tunneling microscopy,” Langmuir 8, 496-500 (1992).

48. Z. Zhang, C.C. Chen, C.M. Lieber, B. Morosin, D.S. Ginley and E.L. Venturini, “Relationship between crystal chemistry and the local structure and electronic properties of Tl2Ba2Ca2Cu3O10 superconductors determined by scanning tunneling microscopy and spectroscopy,” Phys. Rev. B 45, 987-992 (1992).

47. Y. Kim, J.-L. Huang and C.M. Lieber, “Characterization of nanometer scale wear and oxidation of transition metal dichalcogenide lubricants by atomic force microscopy,” Appl. Phys. Lett. 59, 3404-3406 (1991).

46. Z. Zhang and C.M. Lieber, “The energy gap of the M3C60 superconductors,” Mod. Phys. Lett. B 5, 1905 (1991). [download pdf]

45. C.M. Lieber and Y. Kim, “Characterization of the structural, electronic and tribological properties of metal dichalcogenides by scanning probe microscopies,” Thin Solid Films 206, 355-359 (1991).

44. Z. Zhang, C.-C. Chen and C.M. Lieber, “Tunneling spectroscopy of M3C60 superconductors: The energy gap, strong coupling, and superconductivity,” Science 254, 1619-1621 (1991).

43. Z. Zhang, C.C. Chen, S.P. Kelty, H. Dai and C.M. Lieber, “The superconducting energy-gap of Rb3C60,” Nature 353, 333-335 (1991).

42. S.P. Kelty, Z. Lu and C.M. Lieber, “Core-level binding energies of Cs-doped C60 and graphite,” J. Phys. Chem. 95, 6754-6756 (1991).

41. S.P. Kelty, Z. Lu and C.M. Lieber, “Scanning-tunneling-microscopy investigations of ternary graphite intercalation compounds,” Phys. Rev. B 44, 4064-4067 (1991). 

40. Y. Kim and C.M. Lieber, “Scanning tunneling microscopy imaging of synthetic oligonucleotides and oligonucleotide-metal complexes,” Scanning Microscopy 5, 311-316 (1991).

39. C.-C. Chen, S.P. Kelty and C.M. Lieber, “(RbxK1-x)3C60 superconductors: Formation of a continuous series of solid solutions,” Science 253, 886-888 (1991).

38. S.P. Kelty, C.-C. Chen and C.M. Lieber, “Superconductivity at 30-K in cesium-doped C60,” Nature 352, 223-225 (1991).

37. C.M. Lieber and X.L. Wu, “Scanning tunneling microscopy studies of low-dimensional materials: Probing the effects of chemical substitution at the atomic level,” Accounts Chem. Res. 24, 170-177 (1991).

36. H. Dai, H. Chen and C.M. Lieber, “Weak pinning and hexatic order in a doped two-dimensional charge-density-wave system,” Phys. Rev. Lett. 66, 3183-3186 (1991).

35. Z. Zhang, Y.L. Wang, X.L. Wu, J.L. Huang and C.M. Lieber, “The effects of oxygen doping on the electronic properties and microstructure of Bi2Sr2CaCu2Ox superconductors determined by scanning tunneling microscopy,” in 2nd World Congress on Superconductivity (World Scientific, Teaneck) 1991.

34. Z. Zhang, C.M. Lieber, D.S. Ginley, R.J. Baughman and B. Morosin, “Scanning tunneling microscopy and spectroscopy studies of the surface structure and electronic properties of single-crystal Tl-Ba-Ca-Cu-O superconductors,” J. Vac. Sci. Technol. B 9, 1009-1012 (1991).

33. X.L. Wu and C.M. Lieber, “Variable temperature scanning tunneling microscopy studies of the charge density wave phases in tantalum disulfide,” J. Vac. Sci. Technol. B 9, 1044-1047 (1991).

32. S.P. Kelty and C.M. Lieber, “Scanning tunneling microscopy investigations of the surface structure and electronic properties of ternary graphite intercalation compounds,” J. Vac. Sci. Technol. B 9, 1068-1071 (1991).

31. X.L. Wu and C.M. Lieber, “Applications of scanning tunneling microscopy to inorganic chemistry,” Prog. Inorg. Chem. 39, 431-510 (1991).

30. X.L. Wu, Y.L. Wang, Z. Zhang and C.M. Lieber, “Electronic and structural effects of oxygen doping in Bi2Sr2CaCu2Ox superconductors characterized by tunneling microscopy,” Phys. Rev. B 43, 8729-8732 (1991).

29. Y. Kim and C.M. Lieber, “Chemically etched silicon surfaces viewed at the atomic level by force microscopy,” J. Am. Chem. Soc. 113, 2333-2335 (1991).

28. Y.L. Wang, X.L. Wu, C.-C. Chen and C.M. Lieber, “Enhancement of the critical current density in single-crystal Bi2Sr2CaCu2O8 superconductors by chemically induced disorder,” Proc. Natl. Acad. Sci. USA 87, 7058-7060 (1990). 

27. Z. Zhang, Y.L. Wang, X.L. Wu, J.L. Huang and C.M. Lieber, “Electronic effect of lead substitution in single-crystal Bi(Pb)-Sr-Ca-Cu-O superconductors determined by scanning tunneling microscopy,” Phys. Rev. B 42, 1082-1085 (1990).

26. X.L. Wu, Z. Zhang, Y.L. Wang and C.M. Lieber, “Structural and electronic role of lead in (PbBi)2 Sr2CaCu2O8 superconductors by STM,” Science 248, 1211-1214 (1990). 

25. H. Chen, X.L. Wu and C.M. Lieber, “Scanning tunneling microscopy investigations of the local electronic and structural effects of iron substitution in tantalum disulfide,” J. Am. Chem. Soc. 112, 3326-3332 (1990).

24. X.L. Wu and C.M. Lieber, “Direct observation of growth and melting of the hexagonal-domain charge-density-wave phase in 1T-TaS2 by scanning tunneling microscopy,” Phys. Rev. Lett. 64, 1150-1153 (1990).

23. X.L. Wu and C.M. Lieber, “Direct characterization of charge-density-wave defects in titanium-doped TaSe2 by scanning tunneling microscopy,” Phys. Rev. B 41, 1239-1242 (1990).

22. X.L. Wu, C.M. Lieber, D.S. Ginley and R.J. Baughman, “Scanning tunneling microscopy investigations of the local structure of Tl2Ba2CaCu2O8 single crystals,” Appl. Phys. Lett. 55, 2129-2131 (1989).

21. Y. Kim and C.M. Lieber, “Synthesis and characterization of new binuclear electron-transfer models containing rigid aromatic spacers,” Inorg. Chem. 28, 3990-3992 (1989).

20. S.P. Kelty and C.M. Lieber, “Atomic-resolution scanning-tunneling-microscopy investigations of alkali-metal-graphite intercalation compounds,” Phys. Rev. B 40, 5856-5859 (1989).

19. S.P. Kelty and C.M. Lieber, “Scanning tunneling microscopy investigations of the electronic structure of potassium-graphite intercalation compounds,” J. Phys. Chem. 93, 5983-5985 (1989).

18. X.L. Wu and C.M. Lieber, “Scanning tunneling microscopy investigations of a new charge density wave phase in niobium-doped tantalum disulfide,” J. Am. Chem. Soc. 111, 2731-2733 (1989).

17. X.L. Wu and C.M. Lieber, “Hexagonal domain-like charge density wave phase of TaS2 determined by scanning tunneling microscopy,” Science 243, 1703-1705 (1989).

16. X.-L. Wu, P. Zhou and C.M. Lieber, “Determination of the local effect of impurities on the charge-density-wave phase in TaS2 by scanning tunneling microscopy,” Phys. Rev. Lett. 61, 2604-2607 (1988).

15. X.-L. Wu and C.M. Lieber, “In situ imaging of a detergent monolayer using scanning tunneling microscopy,” J. Phys. Chem. 92, 5556-5557 (1988).

14. X.L. Wu, P. Zhou and C.M. Lieber, “Surface electronic properties probed with tunneling microscopy and chemical doping,” Nature 335, 55-57 (1988). [News and Views]

13. X.-L. Wu and C.M. Lieber, “Determination of the structural and the electronic properties of surfaces using scanning tunneling microscopy coupled with chemical modifications,” J. Am. Chem. Soc. 110, 5200-5201 (1988).

12. J.L. Karas, C.M. Lieber and H.B. Gray, “Free energy dependence of the rate of long-range electron transfer in proteins. Reorganization energy in ruthenium-modified myoglobin,” J. Am. Chem. Soc. 110, 599-600 (1988).

11. C.M. Lieber, J.L. Karas and H.B. Gray, “Long-range electron transfer in ruthenium-modified metalloproteins,” Welch Symposium Proceedings XXXI, 9 (1988).

10. C.M. Lieber, J.L. Karas, S.L. Mayo, A.W. Axup, M. Albin, R.J. Crutchley, W.R. Ellis and H.B. Gray, “Long-range electron transfer in ruthenium-modified metalloproteins,” in Trace Elements in Man and Animals (Plenum, 1987).

9. C.M. Lieber, J.L. Karas and H.B. Gray, “Reversible long-range electron transfer in ruthenium-modified sperm whale myoglobin,” J. Am. Chem. Soc. 109, 3778-3779 (1987).

8. C.M. Lieber, “Probing polymer-induced reactivity effects in modified electrode catalyst systems,” J. Electrochem. Soc. 133, 442C-444C (1986).

7. C.M. Lieber, M.H. Schmidt and N.S. Lewis, “Kinetic studies of Ligand substitution rates for the Ru(NH3)5(H2O)2+ Ion in Nafion films,” J. Am. Chem. Soc. 108, 6103-6108 (1986).

6. C.M. Lieber, M.H. Schmidt and N.S. Lewis, “Reaction entropy measurements for transition-metal ions bound to Nafion-coated electrode surfaces,” J. Phys. Chem. 90, 1002-1003 (1986).

5. C.M. Lieber and N.S. Lewis, “Probing polymer effects on chemical reactivity: Ligand substitution kinetics of Ru(NH3)5(H2O)2+ in Nafion films,” J. Am. Chem. Soc. 107, 7190-7191 (1985).

4. N.S. Lewis, R. Domingues, C.M. Gronet, C.M. Lieber, M.D. Rosenblum, G.W. Cogan, J.F. Gibbons and G.R. Moddel, “Design of efficient semiconductor/liquid junction interfaces in nonaqueous solvents,” in Chemistry and Physics of Electrocatalysis (ed. J.M. McIntyre, Electrochemical Society, 1984).

3. C.M. Lieber and N.S. Lewis, “Catalytic reduction of CO2 at carbon electrodes modified with cobalt phthalocyanine,” J. Am. Chem. Soc. 106, 5033-5034 (1984).

2. M.L. Rosenbluth, C.M. Lieber and N.S. Lewis, “630-mV open circuit voltage, 12% efficient n-Si liquid junction,” Appl. Phys. Lett. 45, 423-425 (1984).

1. C.M. Lieber, C.M. Gronet and N.S. Lewis, “Evidence against surface state limitations on efficiency of p-Si/CH3CN junctions,” Nature 307, 533-534 (1984).

2019

412. A. Zhang, Y. Zhao, S. You and C.M. Lieber, “Nanowire probes could drive high-resolution brain-machine interfaces,” Nano Today DOI: 10.1016/j.nantod.2019.100821, 9 Dec 2019.

411. M. Sistani, J. Delaforce, R. B. G. Kramer, N. Roch, M. A. Luong, M.I. den Hertog, E. Robin, J. Smoliner, J. Yao, C.M. Lieber, C. Naud, A. Lugstein and O. Buisson, “Highly transparent contacts to the 1D hole gas in ultrascaled Ge/Si core/shell nanowires,” ACS Nano 13, 14145−14151 (2019).

410. M. Tran, K. Shekhar, I.E. Whitney, A. Jacobi, I. Benhar, G. Hong, W. Yan, X. Adiconis, M.E. Arnold, J.M. Lee, J.Z. Levin, D. Lin, C. Wang, C.M. Lieber, A. Regev, Z. He and J.R. Sanes, “Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes,” Neuron 86, 21-24 (2019).

409. S.R. Patel and C.M. Lieber, “Precision electronic medicine in the brain,” Nat. Biotechnol. 37, 1007–1012 (2019). [download pdf]

408. J.M. Lee, G. Hong, D. Lin, T.G. Schuhmann, A.T. Sullivan, R.D. Viveros, H.-G. Park and C.M. Lieber, “Nano-enabled direct contact interfacing of syringe-injectable mesh electronics,” Nano Lett. 19, 5818-5826 (2019). [supplementary info]

407. Y. Zhao, S. You, A. Zhang, J.-H. Lee, J.L. Huang and C.M. Lieber, “Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording,” Nat. Nanotechnol. 14, 783-790 (2019). [supplementary info]

406. R.D. Viveros, T. Zhou, G. Hong, T.-M. Fu, H.Y.G. Lin and C.M. Lieber, “Advanced one- and two-dimensional mesh designs for injectable electronics,” Nano Lett. 19, 4180-4187 (2019).

405. B. Tian and C.M. Lieber, “Nanowired bioelectric interfaces,” Chem. Rev. 119, 9136−9152 (2019).

404. G. Hong and C.M. Lieber, “Novel electrode technologies for neural recordings,” Nat. Rev. Neurosci. 20, 330-345 (2019).

403. X. Yang, T. Zhou, T.J. Zwang, G. Hong, Y. Zhao, R.D. Viveros, T.-M. Fu, T. Gao and C.M. Lieber, “Bioinspired neuron-like electronics,” Nat. Mater. 18, 510–517 (2019).[supplementary info]

402. R. Wang, R.S. Deacon, J. Sun, J. Yao, C.M. Lieber and K. Ishibashi, “Gate tunable hole charge qubit formed in a Ge/Si nanowire double quantum dot coupled to microwave photons,” Nano Lett. 19, 1052-1060 (2019).

Scroll to Top